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EXERCISES

7.1 [8] How many individual cubics are computed when a six-jointed robot moves
along a cubic spline path through two via points and stops at a goal point? How
many coefficients are stored to describe these cubics?

7.2 [13] A single-link robot with a rotary joint is motionless at # = —5°. It is desired to
move the joint in a smooth manner to & = 80° in 4 seconds. Find the coefficients
of a cubic which accomplishes this motion and brings the arm to rest at the goal.
Plot the position, velocity, and acceleration of the joint as a function of time.

7.3 [14] A single-link robot with a rotary joint is motionless at § = —5°. It is desired
to move the joint in a smooth manner to 8 = 80° in 4 seconds and stop smoothly.
Compute the corresponding parameters of a linear trajectory with parabolic
blends. Plot the position, velocity, and acceleration of the joint as a function of
time.

7.4 [30] Write a path-planning software routine that implements (7.24) through (7.28)
in a general way for paths described by an arbitrary number of path points. For
example, this routine could be used to solve Example 7.4..
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7.5 [18] Sketch graphs of position, velocity, and acceleration for the two-segment
continuous-acceleration spline given in Example 7.2. Sketch them for a joint for
which 6, = 5.0°,6,, = 15.0°, 93 = 40.0°, and each segment lasts 1.0 second.

7.6 [18] Sketch graphs of position, velocity, and acceleration for a two-segment spline
where each segment is a cubic, using the coefficients as given in (7.11). Sketch
them for a joint where 6, = 5.0° for the initial point, 8§, = 15.0° is a via point,
and 6, = 40.0° is the goal point. Assume that each segment has a duration of 1.0
second and that the velocity at the via point is to be 17.5 degrees/second.

7.7 [20] Calculate 6;,, 6,3, 1, t,, and t5 for a two-segment linear spline with parabolic
blends. (Use (7.24) through (7.28).) For this joint, 8; = 5.0°, 6, = 15.0°, 6; = 40.0°.
Assume that t;;, = t;,3 = 1.0 second and that the default acceleration to use
during blends is 80 degrees/second®. Sketch plots of position, velocity, and
acceleration of 6.

7.8 [18] Sketch graphs of position, velocity, and acceleration for the two-segment
continuous-acceleration spline given in Example 7.2. Sketch them for a joint for
which 6, = 5.0°,6, = 15.0°, 93 = —10.0°, and each segment lasts 2.0 seconds.

7.9 [18] Sketch graphs of position, velocity, and acceleration for a two-segment spline
where each segment is a cubic, using the coefficients as given in (7.11). Sketch
them for a joint where 8, = 5.0° for the initial point, 6, = 15.0° is a via point,
and 6, = —10.0° is the goal point. Assume that each segment has a duration of
2.0 seconds and that the velocity at the via point is to be 0.0 degrees/second.

7.10 [20] Calculate 6;,, 6,3, 1, t, and t; for a two-segment linear spline with parabolic
blends. (Use (7.24) through (7.28).) For this joint, §; = 5.0°,6, = 15.0°,0; =
—10.0°. Assume that t;;, = 5,3 = 2.0 seconds and that the default acceleration
to use during blends is 60 degrees/second?. Sketch plots of position, velocity, and
acceleration of 6.

7.11 [6] Give the 6 x 1 Cartesian position and orientation representation * x that is
equivalent to 5,7 where § R = ROT(Z, 30°) and S Pgope = [10.0 20.0 30.017.

7.12 [6] Give the f;T that is equivalent to the 6 x 1 Cartesian position and orientation

representationSxG =[5.0 —20.0 10.0 45.0 0.0 0.01%.

7.13 [30] Write a program that uses the dynamic equations from Section 6.7 (the
two-link planar manipulator) to compute the time history of torques needed to
move the arm along the trajectory of Exercise 7.8. What are the maximum torques
required and where do they occur along the trajectory?

7.14 [32] Write a program that uses the dynamic equations from Section 6.7 (the
two-link planar manipulator) to compute the time history of torques needed to
move the arm along the trajectory of Exercise 7.8. Make separate plots of the
joint torques required due to inertia, velocity terms, and gravity.

7.15 [22] Do Example 7.2 when tr1 # try

7.16 [25] We wish to move a single joint from 6, to 6 ; starting from rest, ending at rest,

in time ¢ ,. The values of 6, and 8, are given, but we wish to compute ¢, so that
16w < émax and ()] < émax for all ¢, where émax and émax are given positive
constants. Use a single cubic segment, and give an expression for ¢, and for the
cubic’s coefficients.

7.17 [10] A single cubic trajectory is given by
8(1) = 10 + 90> — 60¢>

and is used over the time interval from ¢ = 0 to t = 1. What are the starting and
final positions, velocities, and accelerations?
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7.18 [12] A single cubic trajectory is given by
6(1) = 10+ 90> — 60r°

and is used over the time interval from ¢ = 0 to ¢ = 2. What are the starting and
final positions, velocities, and accelerations?
7.19 [13] A single cubic trajectory is given by

0(r) = 10+ 5¢ + 701 — 4573

and is used over the time interval from r = 0 to ¢ = 1. What are the starting and
final positions, velocities, and accelerations?
7.20 [15] A single cubic trajectory is given by

6(t) = 10 + 5t + 701> — 45¢3

and is used over the time interval from r = 0 to r = 2. What are the starting and
final positions, velocities, and accelerations?

PROGRAMMING EXERCISE (PART 7)

1. Write a joint-space, cubic-splined path-planning system. One routine that your
system should include is

Procedure CUBCOEF (VAR th0, thf, thdotO, thdotf: real; VAR cc:
vecd); ‘

where

thQ = initial position of 6 at beginning of segment,
thf = final position of # at segment end,

thdot0 = initial velocity of segment,

thdotf = final velocity of segment.

These four quantities are inputs, and ‘““cc”, an array of the four cubic coefficients,
is the output.

Your program should accept up to (at least) five via-point specifications—in the
form of tool frame, {T}, relative to station frame, {S}—in the usual user form:
(x,, ¢). To keep life simple, all segments will have the same duration. Your system
should solve for the coefficients of the cubics, using some reasonable heuristic for
assigning joint velocities at the via points. Hint: See option 2 in Section 7.3.

2. Write a path-generator system that calculates a trajectory in joint space based
on sets of cubic coefficients for each segment. It must be able to generate the
multisegment path you planned in Problem 1. A duration for the segments will
be specified by the user. It should produce position, velocity, and acceleration
information at the path-update rate, which will also be specified by the user.

3. The manipulator is the same three-link used previously. The definitions of the {T'}
and {S} frames are the same as before:

WT =[xy6]=[0.1 0.2 30.0],
gT =[x y8]=1[0.0 0.0 0.0].
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Using a duration of 3.0 seconds per segment, plan and execute the path that starts
with the manipulator at position

[x; ¥; ¢11 =[0.758 0.173 0.0],
moves through the via points

and
[x3 y3 ¢3] = [—0.4 0.3 120.0],

and ends at the goal point (in this case, same as initial point)
[x4 ¥4 41 =[0.758 0.173 0.0].

Use a path-update rate of 40 Hz, but print the position only every 0.2 seconds.
Print the positions out in terms of Cartesian user form. You don’t have to print
out velocities or accelerations, though you might be interested in doing so.

MATLAB EXERCISE 7

The goal of this exercise is to implement polynomial joint-space trajectory-generation
equations for a single joint. (Multiple joints would require » applications of the result.)
Write a MATLAB program to implement the joint-space trajectory generation for
the three cases that follow. Report your results for the specific assignments given; for
each case, give the polynomial functions for the joint angle, angular velocity, angular
acceleration, and angular jerk (the time derivative of acceleration). For each case, plot
the results. (Arrange the plots vertically with angle, velocity, acceleration, and then jerk,
all with the same time scale—check out the subplot MATLAB function to accomplish
this.) Don’t just plot out results—give some discussion; do your results make sense?
Here are the three cases:

a) Third-order polynomial. Force the angular velocity to be zero at the start and at
the finish. Given 6, = 120" (start), 0= 60° (finish), and tp=1sec.

b) Fifth-order polynomial. Force the angular velocity and acceleration to be zero at
the start and at the finish. Given 6, = 120, Op = 60°, and t = 1 sec. Compare your
results (functions and plots) with this same example, but using a single third-order
polynomial, as in problem (a).

¢) Two third-order polynomials with via point. Force the angular velocity to be
zero at the start and at the finish. Don’t force the angular velocity to be zero
at the via point—you must match velocity and acceleration at this point for the
two polynomials meeting at that point in time. Demonstrate that this condition
is satisfied. Given 6, = 60° (start), 6, = 120" (via), 6 = 30° (finish), and
t; =t = 1 sec (relative time steps—i.e., ; = 2 sec).

d) Check the results of (a) and (b) by means of the Corke MATLAB Robotics
Toolbox. Try function jtraj().



